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1. Introduction

Roughly speaking, the term fuzzy geometry labels the noncommutative deformation of Rie-

mannian manifolds which come with a Laplace operator with discrete spectrum. The idea

is to truncate this spectrum and subsequently to deform the product on the truncated set of

corresponding eigenfunctions in order to arrive at a closed algebra of functions. The most

important example of a fuzzy space is certainly the fuzzy sphere, obtained by truncating

the set of spherical harmonics Ylm to the subset l ≤ L together with the deformation of

the product given by

xi ⋆ xj − xj ⋆ xi = [xi ⋆, xj ] ∼ iεijkx
k , (1.1)

where xi, i = 1, . . . , 3 are coordinates denoting a point on S2 ⊂ R3. This deformation can

be traced back, at least, to Berezin [1]; the geometrical interpretation is essentially due to

Madore [2]. For a comprehensive review of fuzzy geometry, see [3].

The concrete physical motivation for studying fuzzy geometry is twofold: First, fuzzy

spaces arise — similarly to other noncommutative spaces — in string theory rather nat-

urally, when certain background fields are turned on [4]. Second, field theories on fuzzy

spaces reduce in general to finite-dimensional matrix models and there are well-defined lim-

its in which the classical field theories on the fuzzy sphere tend to the continuum field theo-

ries on the sphere and on both the commutative and the noncommutative plane. Therefore,

fuzzy geometry might provide a powerful regularization scheme for quantum field theories,

which would possibly have several advantages over a lattice regularization.

A serious obstacle to using fuzzy geometry as a regulator is the fact that the taking of

the limits which yield the commutative spaces does not commute with quantization: In [5],

it was found that a finite “noncommutative anomaly” survives the limit from the fuzzy

sphere to the commutative sphere. This anomaly in turn yields the well-known UV/IR

mixing on the noncommutative plane [6] in a certain limit. An approximate analysis of the

phase diagram of fuzzy scalar field theory [7] as well as corresponding numerical studies [8]

confirm this point. However, modifications of the näıve action used for quantization on the

fuzzy sphere might reproduce the correct commutative limit [9].

To improve our understanding of the situation and to study the effects of the proposed

modifications, an analytical handle on the model would be desirable. As mentioned above,

field theories on fuzzy spaces are matrix models, and for these models, a large set of

techniques has been developed over the last decades, which allows one, for example, to

evaluate the partition function of certain matrix models exactly. Furthermore, gauge theory

on the fuzzy sphere has recently been solved analytically by using localization techniques

on a reformulation of the theory [10]. Unfortunately, scalar field theory turns out to be

too complicated to allow for a complete treatment.

Using the symmetry of the path integral measure, we can however show that the

partition function of fuzzy scalar field theory is the same as that of a multitrace hermitian

matrix model. Knowing this model explicitly would be very useful, as such a multitrace

matrix model can be solved using e.g. the saddle-point approximation. As it turns out, a

perturbative expansion of the kinetic term allows us to identify the multitraces appearing
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in the rewritten action order by order in a straightforward (but increasingly tedious) way.

It is clear that such an expansion makes sense in a particular region of the parameter

space of the theory. Furthermore, this expansion corresponds to the high temperature (or

hopping parameter) expansion which has been successfully used in the calculation of the

phase diagram of scalar field theory on a two-dimensional lattice; for details, see [11] and

references therein.

In this paper, we develop the details of our technique and evaluate the perturbative

expansion up to second order together with the solution of the thus obtained multitrace

matrix model. Explicitly, we find the effective action

Seff = ξ2

∑

i>j

(λi − λj)
2 + ξ(2,2)

(

∑

i>j

(λi − λj)
2

)2

+ ξ4

∑

i>j

(λi − λj)
4 +

∑

i

V (λi) , (1.2)

where λi are the eigenvalues of the matrices encoding the real fields on the fuzzy sphere;

the exact values of the coefficients ξ2, ξ(2,2) and ξ4 can be read off from equations (3.9)

and (3.25). The large N behaviour of the coefficients is given in (4.4) and reads as

ξ2 ∼ N

2
, ξ2,2 = 0 and ξ4 ∼ N2

4
. (1.3)

Moreover, we apply the same technique to the proposed modification of fuzzy scalar field

theory mentioned above, and compare the results to the ones from the undeformed model.

The outline of this paper is as follows. We start with the construction of the model,

comments on various special cases and symmetry considerations in section 2, before we

present the actual perturbative expansion in section 3. The solution of the obtained multi-

trace matrix model in the large N limit is presented in section 4. In section 5, we consider

the modified fuzzy scalar field theory and its corresponding multitrace matrix model, and

we conclude in section 6. Our Lie algebra conventions, further useful formulæ and some

group theoretical background is found in the appendix.

2. Scalar φ4-theory on the fuzzy sphere

2.1 The fuzzy sphere

Consider the sphere S2 ∼= CP 1 together with the Laplace operator obtained from the

Fubini-Study metric. Its eigenfunctions are the spherical harmonics Ylm with eigenvalues

l(l + 1) and degeneracy 2l + 1. The quantized version of this space, which is known as the

fuzzy sphere, is obtained by truncating the spectrum at a certain value L and deforming

the product such that it closes on the corresponding truncated set of eigenfunctions. This

yields a finite-dimensional algebra, which approximates the algebra of functions on S2. To

be more precise, note that in complex coordinates, all the Ylm with l ≤ L can be written as

homogeneous polynomials of degree L in both the homogeneous coordinates zα, α = 1, 2,

on CP 1 and their complex conjugates z̄α. As a basis for these polynomials, we choose the

monomials

zα1
. . . zαL

z̄β1
. . . z̄βL

. (2.1)
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A suitable quantization of this basis is given by1

â†α1
. . . â†αL

|0〉〈0|âβ1
. . . âβL

∈ HL ⊗H∨
L , (2.2)

where |0〉 is the vacuum in the Fock space F of two harmonic oscillators with raising and

lowering operators satisfying [âα, â†β] = δαβ. Evidently, HL ⊂ F denotes the Hilbert space

with L excitations and H∨
L is its dual. The operators (2.2) take over the rôle of the spherical

harmonics (2.1) and form by construction a closed algebra. They are furthermore in a one-

to-one correspondence with endomorphisms of sections of the line bundle O(1)⊗L ∼= O(L)

over CP 1, and thus our quantization prescription is indeed the usual geometric quantization

of CP 1.

Note that the operators (2.2) act on the N = L+1-dimensional irreducible representa-

tion of SU(2) and they can thus be translated into N×N matrices which become hermitian,

if we consider operators corresponding to real functions. Thus, scalar field theories on the

fuzzy sphere can be written in the form of hermitian matrix models.

Furthermore, it can be shown that the Laplace operator ∆ obtained from the Fubini-

Study metric which is equivalent to LiLi with Li = iεijkx
j∂k, where xi are cartesian coor-

dinates denoting points on S2 ⊂ R3, turns into the second Casimir Ĉ2 in the representation

obtained from the quantization procedure.

Demanding invariance under the isometry group SU(2) suggests that after quantiza-

tion, the integral over the sphere turns into a trace over the integrand. The appropriate

normalization is given by the condition that
∫

S2 dA = 4πR2. Therefore,

∫

S2

dA f → 4πR2

N
tr (f̂) . (2.3)

In the following, we will omit the hats over operators for convenience.

Altogether, the fuzzy sphere is defined in terms of a matrix algebra approximating the

algebra of functions on the commutative sphere and it is characterized by the parameters

N and R. We will consider various limits of this matrix algebra in section 5.1.

2.2 The model

With the prescriptions of the last section, we can directly translate ordinary scalar φ4-

theory on the sphere to the fuzzy picture. Note that as in the commutative case, we scale

the Laplacian by a factor of 1
R2 . Our action is therefore given by [13]

S = γ tr
( a

R2
ΦC2Φ + r Φ2 + g Φ4

)

= γ tr
(

− a

2R2
[Li,Φ][Li,Φ] + r Φ2 + g Φ4

)

, (2.4)

where we introduced the shorthand notation γ = 4πR2

N
. Furthermore, the Li are the

generators of SU(2) in the L + 1 = N -dimensional representation of SU(2); see appendix

C for our Lie algebra conventions.

The partition function of the model reads as

Za,r,g,N =

∫

dµD(Φ) e−βS =

∫

dµD(Φ) e
−βγ tr

“

− a

2R2 [Li,Φ][Li,Φ]+r Φ2+g Φ4
”

. (2.5)

1This particular representation of functions on the fuzzy sphere can be found in [12].
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The measure dµD(Φ) denotes the Dyson measure [14] on the set of hermitian matrices of

dimension N × N ,

dµD(Φ) :=
∏

i≤j

dRe(Φij)
∏

i<j

dIm(Φij) . (2.6)

This measure is invariant under the adjoint action of a unitary matrix Ω, Φ → ΩΦΩ†; the

normalization is irrelevant for our purposes. However, we will rely on the fact that under

the decomposition

Φ = ΩΛΩ† , Λ = diag(λ1, . . . , λN ) , (2.7)

the Dyson measure splits according to

∫

dµD(Φ) =

∫ N
∏

i=1

dλi ∆2(Λ)

∫

dµH(Ω) . (2.8)

Here, dµH(Ω) is the Haar measure as defined in appendix A and ∆(Λ) is the Vandermonde

determinant

∆(Λ) := det([λj−1
i ]ij) =

∏

i>j

(λi − λj) . (2.9)

The explicit appearance of the radius R of the sphere is only interesting for approaching

the planar commutative and noncommutative limits. We will therefore put R = 1 in most

of our subsequent discussion.

2.3 The case a = 0: Hermitian matrix model

If we put a = 0 in (2.4), our model reduces to the well-known hermitian matrix model.

This model is exactly solvable [15]. Not only can one straightforwardly reduce this model

to a model of eigenvalues, thereby reducing N2 integrations to N , but one can even give

an explicit expression for the partition function in terms of orthogonal polynomials.

Using the decomposition Φ = ΩΛΩ†, the dependence on Ω drops out and the model

turns into

Za=0 =

∫ N
∏

i=1

dλi ∆2(Λ)

∫

dµH(Ω) e−βγ tr (r
P

i λ2
i +g

P

i λ4
i )

=

∫ N
∏

i=1

dλi e−2
P

i>j ln |λi−λj |−βγ(r
P

i λ2
i +g

P

i λ4
i ) ,

(2.10)

which is the description of a one-dimensional gas of eigenvalues in a quartic potential with a

two-body repulsion. To obtain the exact partition function, consider the monic polynomials

pn of degree n normalized according to
∫

dλ pmpne−βγ tr (rλ2+gλ4) = hmδmn . (2.11)

Then the partition function reads as

Z = N !
N−1
∏

i=0

hi . (2.12)
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As it is well-known, the large N limit of this model has a third order phase transition at

the curve

g =
γ

4N
r2 =

πR2

N2
r2 . (2.13)

for negative values of r. At this curve, the double well potential becomes sufficiently deep,

so that the eigenvalue distribution splits into two components. This phase transition will

be expected to appear also for a 6= 0, as argued in [7].

2.4 The case a 6= 0: The full fuzzy field theory

With a 6= 0, our model (2.4) becomes considerably more difficult than the hermitian matrix

model, as the “external matrices” Li do not commute with unitary matrices, and thus

prevent us from performing the integration over the angular degrees of freedom encoded in

Ω.

In [16], the partition function for the hermitian matrix model with an additional ex-

ternal matrix A and the interaction term V (AΦ) has been calculated exactly by counting

graphs; this solution was reproduced in [17] using the character expansion method. Un-

fortunately, having three external matrices Li as in our model (2.4) renders this method

essentially useless.

However, one can make the following statements: The kinetic term does not depend

on tr (Φ) since C21 = 0. Therefore, when
∫

dµH(Ω)f( tr (ΦC2Φ)) is rewritten as a function

of the eigenvalues of Φ, it only depends on the differences (λi − λj). Since there has to

be a permutation symmetry between the different eigenvalues as well as invariance under

λi → −λi, the kinetic term is in fact a function of the form

∫

dµH(Ω)e− tr (ΦC2Φ) = exp



−
∑

k,m1,n1,...,mk,nk

ξ(m1,n1)...(mk ,nk)Ξ
n1

2m1
. . . Ξnk

2mk



 , (2.14)

where

Ξn
2m :=

(

Ξ2m

)n
:=

(

∑

i>j

(λi − λj)
2m

)n

. (2.15)

Besides yielding a nice consistency check for our calculations later on, this form offers a

physical interpretation: The kinetic term corresponds to an additional attractive2 force

between the eigenvalues, which will compete against the repulsive force stemming from the

Vandermonde determinant.

Altogether, we can make the following qualitative predictions: We expect three differ-

ent phases, each characterized by the dominance of one of the parameters a, r and g.

First, there clearly has to be a remnant of the disordered phase of the matrix model

with a = 0, in which g is dominant. In this phase, 〈| tr (Φ)|〉 is small due to the eigenvalue

repulsion. As the eigenvalues are confined in a single well potential around the origin, also

〈 tr (Φ2)〉 is small.

2The force cannot be repulsive, as the scalar field theory on the fuzzy sphere with g = 0 and r > 0 is

evidently stable for finite N ; it can, however, be repulsive on short distances.
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Second, there can be a non-uniform order phase, in which r strongly influences the

shape of the potential and the double well becomes sufficiently deep. Here, 〈| tr (Φ)|〉 is

still small, but 〈 tr (Φ2)〉 becomes considerably larger.

Third, there should be a uniform ordered phase, in which the kinetic term plays a

significant rôle. As the force introduced by this term corresponds to a potential which

vanishes for Φ ∼ τ0, we expect that in the large N limit, the expectation value of

〈| tr (Φ)|〉2 ≈ 〈 tr (Φ)2〉. Surprisingly, such a phase seems to be present even in the ab-

sence of the kinetic term [18].

2.5 From fuzzy scalar φ4-theory to multitrace matrix models

It is easy to see that any hermitian matrix model can be rewritten in terms of multitrace

expressions: Since the Dyson measure is invariant under the adjoint action by an arbitrary

unitary matrix Ω,

dµD(Φ) = dµD(ΩΦΩ†) , (2.16)

the part of the action relevant to integration has to be invariant under this action, as well.

Formally, we can write:
∫

dµD(Φ) e−S =

∫

dµD(Φ) e−Seff with e−Seff [Φ] =
1

vol(U(N))

∫

dµH(Ω) e−S[ΩΦΩ†] ,

and Seff is clearly invariant under Φ → ΩΦΩ†. Now the only functions of Φ invariant under

this transformation are products of traces, and we thus have

Seff =
∑

n

sn tr (Φn) +
∑

n,m

snm tr (Φn) tr (Φm) +
∑

n,m,k

snmk tr (Φn) tr (Φm) tr (Φk) + . . . .

Such an action is certainly much easier to study than the original one involving an external

matrix. Our goal will therefore be to turn our model of fuzzy scalar φ4-theory at least

approximately into such a multitrace matrix model.

Multitrace matrix models became popular at the beginning of the 1990ies, as they

were found to arise naturally when higher order curvature terms were included in matrix

models describing two-dimensional gravity [19], see also [20]. Including these curvature

terms amounts to modifying the kinetic term of the matrix model by adding tr (AΦAΦ),

where A is a fixed external matrix. Before this model was solved exactly in [16], the authors

of [19] approximated it by the simplest multitrace matrix model of the form

S = a tr (Φ2) tr (Φ2) + r tr (Φ2) + g tr (Φ4) . (2.17)

This matrix model has been considered as a model for string theories with c > 1 and

additional curvature terms like
∫

d2σ
√

gR2. It was found that the phase diagrams of both

theories share many features [20].

2.6 The most general hermitian matrix model

As a remark, note that one can push the analysis of the structure of hermitian matrix

models using the symmetries of the measure even further. The full symmetry group of the

– 7 –
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Dyson measure dµD(Φ) on the ensemble of N × N hermitian matrices is in fact SO(N2),

as

dµD(Φ) f(Φ) ∼ dN2

Φµ f(Φµτµ) . (2.18)

where dN2

Φµ is the ordinary volume element on RN2

. This implies that the only relevant

part of the action S is the one which is invariant under SO(N2) rotations of the components

Φµ, Seff , and therefore, the action has to be a function of tr (Φ2):

∫

dµD(Φ) e−S =

∫

dµD(Φ) e−Seff with Seff =
∑

n

s̃n

(

tr (Φ2)
)n

. (2.19)

In this expansion, however, the large N limit becomes entangled with the rewriting of the

model in terms of tr (Φ2), which renders the reformulation useless for most purposes.

2.7 The toy model: Hermitian 2 × 2 matrices

For simplicity, let us consider for a moment the case L = 1. The matrices Φ act here in

the fundamental representation of SU(2), i.e. Φ is a hermitian 2 × 2 matrix. We expand

Φ = Φµτµ in the generators τµ = (τ0, τa) of SU(2); see appendix C for more details on our

conventions. Together with the commutation relations [τa, τb] =
√

2iεabcτc, the action (2.4)

simplifies to

S = γ
(

2aΦaΦa + rΦµΦµ + g tr ((Φµτµ)4)
)

. (2.20)

Since ΦaΦa = tr ((Φ− 1
21 tr (Φ))2) = tr (Φ2)− 1

2 tr (Φ) tr (Φ), we can rewrite this expression

in terms of traces:

S = γ
(

(2a + r) tr (Φ2) − a tr (Φ) tr (Φ) + g tr (Φ4)
)

. (2.21)

As in the case of the pure matrix model, one can decompose Φ into the product ΩΛΩ†,

where Ω is a unitary matrix and Λ = diag(λ1, λ2). The Dyson measure dµD(Φ) will

again split into the measure on the space of eigenvalues dλ1dλ2 and the Vandermonde

determinant (λ1 − λ2)
2. In total, the partition function for L = 1 reads as

Za,r,g =

∫

dλ1dλ2 (λ1 − λ2)
2 e−βγ(a(λ1−λ2)2+r(λ2

1
+λ2

2
)+g(λ4

1
+λ4

2
)) . (2.22)

We will use this special case for comparison with our perturbative results for general N .

3. Perturbative expansion of the model

3.1 Motivation

As mentioned in the previous section, our goal will be to turn fuzzy scalar field theory into

a multitrace matrix model. Since we do not know of any direct route to integrating out

the angular degrees of freedom exactly, we will have to resort to perturbative techniques.

This approach is also suggested by the lattice analysis of scalar φ4-theory on R2, where

a hopping parameter — or high-temperature — expansion has been successfully used, see

e.g. [11] and references therein.
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C

g
−r

C

g
−r

Figure 1: On the left, the specific heat C := ∂
∂β2 log Z for the pure matrix model with a = 0

is plotted. The right plot presents the result of the O(a8)-approximation to fuzzy φ4-theory for

N = 2.

Assuming that the coefficient of the kinetic term, a, is small — or equivalently that

the coefficients r and g are large, it clearly makes sense to expand the model in powers of

a. To demonstrate this, we use the high-temperature expansion to compute the specific

heat of our model for N = 2. The results are shown in figure 1, where the specific heat C

is plotted in the case N = 2 for both the pure matrix model and the full theory with high

temperature expansion up to O(a8). In the pure matrix model, one clearly sees that the

critical line of the third order phase transition is a parabola. The plot corresponding to

the full model shows that the critical line for the second order phase transition is indeed a

straight line, and the slope extracted from this data deviates from the numerical prediction

by only 3.25%.

Note that the matrix model phase transition is certainly also present in the full model,

however, it is invisible in the second plot, as the scale of the maximum is far larger than

the scale of the parabolic valley. In general, for large g, the specific heat C := ∂
∂β2 log Z

interpolates between 1
2 at large positive and negative r. However, there is an intermediate

phase, where C approximates 1
4 which corresponds to the negative r phase of the pure

matrix model, see figure 2.

3.2 Perturbative expansion — O(a1)

We will use again the Gell-Mann basis and write Φ = Φµτµ. Note that the kinetic term

only depends on Φa as C2 annihilates τ0 ∼ 1. We start from the expression

eβγaΦaKabΦ
b

= 1 + βγaΦaKabΦ
b +

β2γ2a2

2
ΦaKabΦ

b ΦcKcdΦ
d + . . . , (3.1)

where

Kab = tr ([Li, τa][Li, τb]) . (3.2)

As in the case of the pure matrix model, we diagonalize Φ = ΩΛΩ† using the unitary

matrix Ω. This matrix contains the angular information on Φ and has to be integrated

– 9 –
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Figure 2: Cross-section through the right plot of figure 1 at g = 150.

over at the end. We thus have

Φa = tr (τaΩΛΩ†) , (3.3)

and we need to compute
∫

dµH(Ω)Kab tr (τaΩΛΩ†) tr (τ bΩΛΩ†) (3.4)

at first order and
∫

dµH(Ω)KabKcd tr (τaΩΛΩ†) tr (τ bΩΛΩ†) tr (τ cΩΛΩ†) tr (τdΩΛΩ†) (3.5)

at second order.

After rewriting these expressions as sums over traces in irreducible representations, we

can apply the orthogonality relation3

∫

dµH(Ω) [ρ(Ω)]ij [ρ†(Ω)]kl =
1

dim(ρ)
δilδjk , (3.6)

to perform the angular integration. We therefore continue by rewriting (3.4) as

tr
(

(τaΩΛΩ†) ⊗ (τ bΩΛΩ†)
)

= tr
(

(τa ⊗ τ b)(Ω ⊗ Ω)(Λ ⊗ Λ)(Ω† ⊗ Ω†)
)

=: tr ([a ⊗ b]) .

The tensor product4 a ⊗ b splits into a b ⊕ a

b
, and thus we have

tr ([a ⊗ b]) = tr a b ([a ⊗ b]) + tr a

b

([a ⊗ b]) . (3.7)

The integral is now easily performed by applying the orthogonality relation (3.6), and we

arrive at
∫

dµH(Ω)KabΦ
aΦb = Kab

( 1

dim( a b )
tr a b (τa ⊗ τ b) tr a b (Λ ⊗ Λ)+

+
1

dim( a

b
)

tr a

b

(τa ⊗ τ b) tr a

b

(Λ ⊗ Λ)
)

.
(3.8)

3For a proof of this relation, see appendix A.
4Note that our notation here obviously deviates from the standard one. For more details on this, see

appendix B.
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Note that tr ρ(Λ ⊗ Λ) is actually the character of Λ in the irreducible representation ρ.

The traces can be easily computed and the results are given in appendix B. With these

formulæ, we obtain
∫

dµH(Ω)KabΦ
aΦb = tr K

(

1

N − N3
( tr Λ)2 +

1

N2 − 1
tr Λ2

)

=
1

2
N2

(

tr Λ2 − 1

N
( tr Λ)2

)

=
1

2
N

∑

i>j

(λi − λj)
2 =

N

2
Ξ2 ,

(3.9)

where we used

tr (K) = tr (C2) =
L

∑

l=0

(2l + 1)(l(l + 1)) =
1

2
L(1+ L)2(2+ L) =

1

2
(N − 1)N2(N + 1) .

(3.10)

and

∑

i

λ2
i −

1

N

∑

i,j

λiλj =

(

1 − 1

N

)

∑

i

λ2
i −

2

N

∑

i>j

λiλj =
1

N

∑

i>j

(λ2
i −2λiλj +λ2

j ) . (3.11)

One easily checks that (3.9) is indeed independent of τ0: for Λ = 1N and, equivalently,

for eigenvalues λ1 = . . . = λN , the expression vanishes. Note that we can replace Λ by

Φ everywhere, keeping the expression independent of the angles Ω. Therefore, one can

“invert” the integration and replace KabΦ
aΦb in (3.1) under the integral directly according

to
∫

dµD(Φ)KabΦ
aΦb =

∫

dµD(Φ)N2

(

tr (Φ2) − 1

N
tr (Φ)2

)

. (3.12)

3.3 Perturbative expansion — O(a2)

The calculations for higher orders in a and thus K are more and more involved, but

nevertheless straightforward. For our approximations, we would like to have one more

order in a, so let us calculate the involved terms:
∫

dµD(Φ)KabΦ
aΦbKcdΦ

c Φd , (3.13)

which turns into
∫

dµD(Φ)
∑

ρ

1

dim(ρ)
KabKcd tr ρ(τ

a ⊗ τ b ⊗ τ c ⊗ τd) tr ρ(Φ ⊗ Φ ⊗ Φ ⊗ Φ) . (3.14)

after using again the orthogonality relation (3.6).

We start by considering the terms KabKcd tr ρ(τ
a⊗τ b⊗τ c⊗τd). The traces of this form

break up nicely into ordinary traces and multitraces as above, and the detailed formulæ

are found in appendix B. Additionally, we use the identities

KabKcd tr (τaτ bτ cτd) = KabKcd

(

1

N
δabδcd +

1

4
dabedcde

)

,

KabKcd tr (τaτ cτ bτd) = KabKcd

(

1

N
(2δacδbd − δabδcd) +

1

2
dacedbde − 1

4
dbaedced

)

,

(3.15)

– 11 –



J
H
E
P
0
8
(
2
0
0
7
)
0
6
6

which are easily proven with the identities given in appendix C.

We have now the following contributions in the various representations, multiplicities

already taken into account:

:
1

24

((

1 +
2

N

)

( tr K)2 +

(

2 +
4

N

)

tr K2 +

(

1

2
dabedcde + dacedbde

)

KabKcd

)

: −1

8

((

1 +
2

N

)

( tr K)2 +

(

2 +
4

N

)

tr K2 +

(

1

2
dabedcde + dacedbde

)

KabKcd

)

:
1

6

(

( tr K)2 + 2 tr K2
)

: −1

8

((

1 − 2

N

)

( tr K)2 +

(

2 − 4

N

)

tr K2 −
(

1

2
dabedcde + dacedbde

)

KabKcd

)

:
1

24

((

1 − 2

N

)

( tr K)2 +

(

2 − 4

N

)

tr K2 −
(

1

2
dabedcde + dacedbde

)

KabKcd

)

(3.16)

Note that — as expected — the sum over the above terms vanishes. To obtain the correction

to second order in a, we have to divide each term by the dimension of the corresponding

representation and multiply by the character of Λ (or Φ) in this representation. The latter

are taken from table (B.7), and putting all together, we obtain

∫

dµD(Φ)KabΦ
aΦbKcdΦ

c Φd =

∫

dµD(Φ)
(2 tr K2 + ( tr K)2)(t41 + 8t1t3 − 2(t21t2 + t4)N + t22(N

2 − 6)

N2(N4 − 10N2 + 9)
+

+
−5t41 − 4t1t3 + 3t22 + (10t21t2 + t4)N − 2(2t1t3 + t22)N

2 + t4N
3

N(−36 + N2(−7 + N2)2)
KqK ,

(3.17)

where we used the shorthand notations

KqK :=

(

1

2
dabedcde + dacedbde

)

KabKcd (3.18)

and

tpq :=
(

tq
)p

:=
(

tr (Λq)
)p

. (3.19)

As discussed in section 2.4, we can in fact rewrite the integrand in (3.17) in terms of the

two functions:

Ξ4 =
∑

i>j

(λi − λj)
4 and Ξ2

2 =

(

∑

i>j

(λi − λj)
2

)2

. (3.20)

For this, note that

2
∑

i>j

(λi − λj)
q = Ntq −

(

q

1

)

tq−1t1 + . . . −
(

q

q − 1

)

t1tq−1 + Ntq

=

q
∑

i=0

(−1)i(−1)q−i

(

q

i

)

tq−iti .

(3.21)
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In our case, Nt4 uniquely identifies the contribution of Ξ4, while N2t22 marks the contri-

bution of Ξ2
2. We thus read off that

∫

dµD(Φ)KabΦ
aΦbKcdΦ

c Φd =

∫

dµD(Φ)
(2 tr K2 + ( tr K)2)

N2(N4 − 10N2 + 9)
(α1Ξ4 + α2Ξ

2
2)+

+
1

N(−36 + N2(−7 + N2)2)
(β1Ξ4 + β2Ξ

2
2)KqK ,

(3.22)

where

α1 = −2 , α2 = 1 , β1 = (N − 2)(N − 3) + 5(N − 1) , β2 = −5 ; (3.23)

performing the complete calculation as a consistency check yields the same result. Using

additionally that

( tr K)2 = ( tr C2)
2 =

1

4
(N − 1)2N4(N + 1)2 ,

tr K2 = ( tr C2
2 ) =

1

3
(N − 1)2N2(N + 1)2 ,

(3.24)

we can further simplify our result to

∫

dµD(Φ)KabΦ
aΦbKcdΦ

c Φd =

∫

dµD(Φ)
(N2 − 1)(8 + 3N2)

12(N2 − 9)
(−2Ξ4 + Ξ2

2)+

+
1

N(−36 + N2(−7 + N2)2)
(β1Ξ4 + β2Ξ

2
2)KqK .

(3.25)

3.4 Formula to all orders

In general, every order in a of the expansion of the kinetic term can be rewritten as a poly-

nomial of the eigenvalues in this manner. Multiplying by the Vandermonde determinant

only increases the degree of the polynomial.

To all orders, the expansion reads as

∫

∏

i

dλi ∆2(Λ)e−βγ tr (r Φ2+g Φ4)
∞

∑

n=0

(βγa)n

n!

∑

ρ∈Y (2n)

1

dim(ρ)
Ka1b1 . . . Kanbn

×

× tr ρ(τ
a1 ⊗ τ b1 ⊗ . . . ⊗ τan ⊗ τ bn)χρ(Λ) ,

(3.26)

where Y (2n) is the set of irreducible representations of SU(N) corresponding to Young

diagrams with 2n boxes, Λ is the diagonal matrix of the eigenvalues of Φ and χρ(Λ) denotes

the formula for the character in the representation ρ, evaluated at Λ.

If one were to use orthogonal polynomials for solving the approximated model, note

that the only integrals which would appear are of the form

∫

dλ λnerλ2−gλ4

=
1

4
(1 + (−1)n)

( g

r2

)
3+n

4

(
√

g

r2
Γ

(

1 + n

4

)

1F1

(

1 + n

4
;
1

2
;
g2

4r

)

+

Γ

(

3 + n

4

)

1F1

(

3 + n

4
;
3

2
;
g2

4r

))

,
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and since they are thus exactly soluble for g
r2 > 0, which corresponds to our case, one

can in principle perform exact analytic computations at every order in a. In practice, the

terms appearing will be more and more involved and it is thus advisable to use a computer

algebra program.

3.5 Verification for N = 2

To verify the above description, let us briefly compare to the exact results in the case

N = 2, i.e. L = 1. From (2.21), we obtain

∫

dµD(Φ) ΦaKabΦ
b =

∫

dµD(Φ) 2 tr (Φ2) − tr (Φ) tr (Φ) , (3.27)

which is identical to (3.12) in the case N = 2.

In the case of the term at second order, the general expansion of the tensor product is

truncated according to

µ ⊗ ν ⊗ ρ ⊗ σ = µ ν ρ σ ⊕ µ ν ρ
σ

⊕ µ ν σ
ρ

⊕ µ ρ σ
ν

⊕

⊕ µ ν
ρ σ

⊕ µ ρ
ν σ

(3.28)

As a consistency check, one can sum tr ρ over these representations which yields the usual

tr (τµ) tr (τν) tr (τρ) tr (τσ). Using the identities (valid for L = 1)

KabKcd tr (τaτ bτ cτd) =
1

2
δabδcdKabKcd =

1

2
( tr K)2 ,

KabKcd tr (τaτ cτ bτd) =
1

2
(δacδbd + δadδbc − δabδcd)KabKcd =

1

2
( tr K)2 ,

(3.29)

and the formulæ given in table (B.5), one easily verifies that

∫

dµD(Φ) ΦaKabΦ
b ΦcKcdΦ

d =

∫

dµD(Φ) − 4 tr Φ4 + 6( tr Φ2)2 − ( tr Φ)4

= (λ1 − λ2)
4 ,

(3.30)

in agreement with the term of order O(a2) in the Taylor expansion of (2.22).

4. Solution of the model for large N

4.1 Large N limit

Numerical results [8] suggest, that the parameters of fuzzy scalar field theories at different L

can be rescaled to make the corresponding phase diagrams collapse to one unique diagram.

This implies in particular, that we can study the large N limit, in which the formulas

simplify and we can apply the saddle-point approximation. Let us therefore extract the

large N limit in the following.
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Using the identity τµ
ijτ

µ
kl = δilδjk and

KabKcd tr (τaτ bτ cτd) =
1

4
tr ([Li, τ

a][Li, τ
b]) tr ([Lj , τ

c][Lj , τ
d]) tr (τaτ bτ cτd)

=
1

4
tr ([Li, τ

µ][Li, τ
ν ]) tr ([Lj , τ

ρ][Lj, τ
σ ]) tr (τµτντρτσ) ,

(4.1)

we find that

KabKcd tr (τaτ bτ cτd) =
1

2
N2 tr (LiLiLjLj) +

1

2
N( tr (LiLi))

2 ,

KabKcd tr (τaτ cτ bτd) =
1

2
tr ([Li, Lj ][Li, Lj ]) .

(4.2)

We have furthermore LiLi = 1
2(N2 − 1)1N and tr (LiLj) = 1

6N(N2 − 1)δij , from which it

follows that
1

2
N2 tr (LiLiLjLj) +

1

2
N( tr (LiLi))

2 =
1

4
N3(N2 − 1)2 ,

1

2
tr ([Li, Lj ][Li, Lj ]) = −N(N2 − 1) .

(4.3)

Thus, the dominant term in (3.16) is ( tr K)2 ∼ N8, in particular the term KqK is negligible

in the large N limit. Altogether, (3.17) eventually reduces to

∫

dµD(Φ)KabΦ
aΦbKcdΦ

c Φd =

∫

dµD(Φ)

(

−N2

2
Ξ4 +

N2

4
Ξ2

2

)

, (4.4)

where the second term is precisely the next term in the Taylor expansion of the exponenti-

ated correction in O(a1). The first term is new, and corrects the matrix model. Note that

it has the right sign to be exponentiated again and keep the partition function well-defined.

One is clearly tempted to conjecture that at nth order in the high-temperature ex-

pansion, the term
∑

i>j(λi − λj)
2n is new, while all the other terms just correspond to

terms in the Taylor expansion of corrections at smaller orders. This, however, seems not

yet possible to prove with the techniques at hand.

If this assumption is correct, we can reexponentiate the terms and arrive at the fol-

lowing matrix model, written in terms of eigenvalues:

S = γ
∑

i

(

rλ2
i + gλ4

i

)

+ γ
∑

i>j

(

−a

2
N(λi − λj)

2 +
γa2

4
N2(λi − λj)

4 − 2

γ
ln |λi − λj|

)

.

(4.5)

Note that even if the assumption was not correct, this would still be a useful approximation

valid up to order O(a2).

In the large N limit, we rescale λi → λ( i
N

) = λ(x) with 0 < x < 1 and the sums are

turned into integrals:
∑N

i=0 → N
∫ 1
0 dx. We thus arrive at the action

S = γN

∫ 1

0
dx

(

rλ2(x)+gλ4(x) + N

∫ 1

0
dy

(

− a

4
N(λ(x) − λ(y))2

+
γa2

8
N2(λ(x) − λ(y))4 − 1

γ
ln |λ(x) − λ(y)|

))

.

(4.6)
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4.2 The saddle-point approximation

For both single and multitrace hermitian matrix models, the saddle-point approximation

provides a powerful tool for analyzing the phase structure. However, one has to integrate

out the angular variables first and reduce the matrix model to the eigenvalue formulation.

This is due to the fact that the angular degrees of freedom are zero modes in the partition

function and keeping them would render the saddle-point approximation invalid.

In the large N limit, we can define scaling limits for the coupling constants, such that

all of the terms contribute. From the log-term, we see that we have to pull out a factor of

N2. Supporting the validity of our approach is the fact that we can choose a scaling which

agrees with the scaling found numerically [8]:

a = N θa ã , r = N θr r̃ , g = N θg g̃ and λ(x) = N θλλ̃(x) , (4.7)

where

θa = −1

2
, θr =

3

2
, θg = 1 and θλ =

1

4
. (4.8)

Note that the correct conversion is the following:

θb = −1 + θr − θa + 2θλ and θc = −1 + θg − 2θa + 4θλ , (4.9)

where b and c are the coupling constant in the normalization of [8].

Altogether, we have the following partition function:

Z =

∫

Dλ exp(−N2S̃) , (4.10)

where

S̃ = 4π

∫ 1

0
dx

(

r̃λ̃2(x)+g̃λ̃4(x) +

∫ 1

0
dy

(

− ã

4
(λ̃(x) − λ̃(y))2

+
4πã2

8
(λ̃(x) − λ̃(y))4 − 1

4π
ln |λ̃(x) − λ̃(y)|

))

.

(4.11)

With our scaling, the saddle-point method becomes exact in the large N limit.

Rewriting the integral over y in (4.11) as an integral over λ̃(y) introduces the eigenvalue

density u(λ̃) = dy/dλ̃, and the moments

c0 =

∫

dµ̃ u(µ̃)
!
= 1 and ci =

∫

dµ̃ u(µ̃)µ̃i , i = 1, . . . , 4 (4.12)

appear. Since our problem is symmetric with respect to λ̃ → −λ̃, it is natural to assume

that the eigenvalue density will possess this symmetry5 and therefore the odd moments c1

and c3 have to vanish. Together with suppressing constant terms in λ̃, this reduces the

action (4.11) to the following one:

S̃ = 4π

∫ 1

0
dx

((

r̃− ã

4
+

6πã2

2
c2

)

λ̃2(x)+

(

g̃+
πã2

2

)

λ̃4(x)− 1

4π

∫ 1

0
dy ln |λ̃(x)−λ̃(y)|

)

,

(4.13)

which corresponds to the action of the minimal multitrace matrix model studied in [19]

with shifted coefficients.
5The results of [18] indicate that this is not necessarily so; however, we will postpone the detailed

discussion of this point to a future publication.

– 16 –



J
H
E
P
0
8
(
2
0
0
7
)
0
6
6

4.3 The solution

Since the solution to our model can be derived by well-known methods, let us be brief in

the calculation. Assuming that we have a one-cut solution, for which u(λ) has support

on the interval [−δ, δ], the saddle-point equation, which is the equation for the stationary

points of (4.13) rewritten using the eigenvalue density u(λ) under the constraint c0 = 1,

reads as

4π

(

r̃ − ã

4
+

6πã2

2
c2

)

λ̃ + 8π

(

g̃ +
πã2

2

)

λ̃3 =

∫ δ

−δ

− dµ̃
u(µ̃)

λ̃ − µ̃
, (4.14)

where the integral on the right hand side is a principal value integral. The solution to (4.14),

obtained in the usual manner, is

u(λ̃) =

(

4r̃ − ã + 12πã2c2 + 4

(

g̃ +
πã2

2

)

δ2 + 8

(

g̃ +
πã2

2

)

λ̃2

)√

δ2 − λ̃2 ; (4.15)

the familiar polynomial deformation of the Wigner semicircle distribution. The normaliza-

tion condition c0 = 1 yields

1

2
πδ2

(

4r̃ + 18g̃δ2 − ã + 3πã2
(

4c2 + 3δ2
))

= 1 . (4.16)

Solving this equation for c2 results in

c2 =
2 + πδ2(ã − 4r̃ − 9(2g̃ + ã2π)δ2)

12π2ã2δ2
, (4.17)

and using the original definition of c2 yields the self-consistency condition

πδ2(8r̃ + 36g̃δ2 + ã(3ãπδ2(8 + π(2g̃ + ã2π)δ2) − 2)) − 4 = 0 . (4.18)

4.4 The phase diagram

As discussed before, we expect a non-uniform order phase in the phase diagram, and

therefore a region in the parameter space for which the one-cut assumption is no longer

valid. In this region, the eigenvalue density (4.15) will become negative and therefore ill-

defined. Looking at the polynomial part q(λ) of u(λ), we see that the transition should

occur, when q(0) = 0. Together with the normalization of c0 and the self-consistency

condition for c2, this gives a critical curve C marking the critical values of g depending on

the other parameters. Explicitly, C is defined by the following two branches:

C± =
π

32

(

−63ã2 − 8ãr̃ + 16r̃2 ± (4r̃ − ã)
√

16r̃2 − 8ãr̃ − 95ã2
)

. (4.19)

The same result can be obtained straightforwardly in a different manner: Let us again

assume a symmetric eigenvalue density which allows us to turn to the action

Ŝ = s2 tr (Φ2) + s2,2( tr (Φ2))2 + s4 tr (Φ4) . (4.20)

Furthermore, we define the effective coupling ŝ2 = s2 +s2,2〈 tr (Φ2)〉. We can now treat our

model as if it was a pure, single-trace hermitian matrix model with ŝ2 as the coefficient
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Figure 3: The one-cut-two-cut transition for the matrix model and the boundary for the region of

validity of the one-cut solution to the multitrace matrix model for ã = 1.

of the quadratic term. In the regime in which the eigenvalue density has support on two

disjoint cuts, we have the usual formula 〈 tr (Φ2)〉 = −Nŝ2

2s4
. Using the equation ŝ2 =

−2
√

Ns4 for the one-cut two-cut transition, we are lead to the rescaling of fields we used

above and eventually arrive at the curve C as a self-consistent solution.

To compare this phase transition to the ones obtained numerically, recall that in [8],

three disctinct phases were found. The transition between the first and the second phase

is of third6 order, i.e. the specific heat has a discontinuous first derivative at the curve

roughly described by equation (2.13). The transition between the second and the third

phase is of second order, i.e. the specific heat diverges, and numerical results suggest that

the critical curve is approximately given by the equation

g = (0.19 ± 0.08)
√

Nr . (4.21)

The phase boundary we find is a deformation of the matrix model boundary, cf. figure 3.

In this deformation, the region in which the one-cut solution is valid is increased by turning

on a. This is in agreement with the predictions derived from the numerical results, that the

triple point at which the third-order phase transition meets the critical line of the second

order transition is located at larger values of r than in the case of the pure matrix model

transition. Therefore, our results suggest to interpret the turning point of the curve given

by C± as the rough location of the triple point, and we will use this interpretation in the

following section. A comparison with the numerical values confirms this interpretation. The

turning point is located at (r, g) ≈ (−2.7, 0.25) which is to be compared to the result (r, g) =

(−2.3 ± 0.2, 0.52 ± 0.02) from the numerical computations [8], a reasonable agreement for

a second order approximation.

We expect the critical curve (4.21) to emerge in a future discussion of the full solution

space to our multitrace matrix model.

6A detailed calculation proving this will be presented in a future publication.
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5. Modification of the model

5.1 N → ∞ limits of the model

The various limits with N → ∞ for scalar field theory on the fuzzy sphere were discussed

in [5]. To make these limits more transparent, note that we can obtain a noncommutative

coordinate on S2
F using the noncommutative analogue of the coordinate xi ∼ zασi

αβ z̄β :

x̂i = â†α
Rσi

αβ√
N2 − 1

âβ with x̂ix̂i
∣

∣

HN−1
= R21̂∣∣

HN−1
, (5.1)

where HN−1 is the two-oscillator Hilbert space with L = N − 1 excitations. These coordi-

nates satisfy the algebra

[x̂i, x̂j ] = i
2R√

N2 − 1
εijkx̂

k . (5.2)

There are now the following large N limits:

⊲ The limit of the commutative sphere S2, for which we simply take N → ∞ with fixed

radius R.

⊲ The noncommutative planar limit, in which we consider the tangent plane7 at the

north pole. That is, x̂3 → R and therefore the correct limit is N2 → ∞ and R2 = Nθ
2 ,

which results in the noncommutative coordinate algebra [x̂1, x̂2] = iθ on R2
θ.

⊲ The ordinary planar limit, for which N → ∞ and R2 ∼ N1−ε with 0 > ε > 1. In this

limit, the coordinates x̂1, x̂2 turn into the commutative coordinates on R2.

5.2 Commutative and noncommutative φ4-theory on the plane

As mentioned in the introduction, the näıve action for scalar field theory on the fuzzy

sphere will not reproduce standard φ4-theory on R2. There is a UV/IR mixing [21] even in

the case of the fuzzy sphere, which is, however, finite for every finite value of L [5]. In [9], it

was shown that the deviation from the commutative theory is given by tadpole diagrams,

which can be removed by modifying the action in the following way:

S̃ = γ tr

(

a

R2
Φ

(

C2ZL(C2) + t − λ

2
R(L, t)

)

Φ + r Φ2 + g Φ4

)

, (5.3)

where ZL(C2) is a power series in C2 corresponding to wave function renormalization, and

R(L, t) is a function logarithmically diverging for large L.

The numerically obtained structure of the phase diagram of fuzzy scalar field theory [8]

suggests a comparison with that of φ4-theory on R2, as the phase transition corresponding

to the line is also seen there: The existence of a second order phase transition in scalar

φ4-theory on R2 has been rigorously established in [22]. This phase transition is due to

spontaneously broken reflection symmetry φ → −φ. The exact structure of the phase

7A more detailed discussion would use complex coordinates and the stereographic projection.
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diagram was calculated only later using lattice and other techniques [23]. It was found

that for the model

LE =
1

2
(∇φ)2 +

1

2
m2φ2 +

1

4
λφ4 , (5.4)

the phase transition on a lattice occurs along the line λ = −10.24(3)m2 in the λ-m2-plane.

Note that the third order phase transition stemming from the matrix model part

together with its triple point with the second order phase transition is absent. This phase

finds, however, a nice interpretation in terms of φ4-theory on the noncommutative plane.

There, the theory exhibits a new striped phase, which breaks translational invariance. This

phase has been predicted in [24] for d > 2 using a self-consistent Hartree treatment and

in [25] via a one-loop renormalization group analysis. Numerical evidence for the existence

of such a new phase has been found in [26]. As argued in [27], appendix B, a definitive

confirmation of this result is still pending.

Altogether, we conclude that näıve φ4-theory on the fuzzy sphere serves most likely

as a regulator of φ4-theory on the noncommutative plane. Furthermore, we expect that in

the modified model (5.3), the triple point moves off towards r = −∞, which would be a

clear hint for a fuzzy field theory tending indeed to quantized φ4-theory on the plane in

the appropriate large N and R limits.

5.3 Modified fuzzy φ4-theory

Let us now study the effect of the wave function regularization on the phase diagram,

assuming that ZL(C2) ≈ 1 + κC2. That is, we consider the modified action

S̃ = γ tr
( a

R2
Φ(C2 + κC2C2)Φ + r Φ2 + g Φ4

)

. (5.5)

This modification is particularly simple to realize in our formalism, as it amounts to re-

placing the kinetic matrix

Kab → Ǩab := Kab + κKacKcb . (5.6)

We thus have the following new quantities:

tr (Ǩ) =
1

6
(N − 1)N2(N + 1)(3 + 2(N2 − 1)κ) ,

tr (Ǩ2) =
1

30
N2(N2 − 1)2(10 + 5(3N2 − 4)κ + 2(3N4 − 9N2 + 8)κ2) .

(5.7)

To have both contributions in Ǩ survive the large N limit, κ = N θκκ̃ has obviously to

scale with θκ = −2. After rescaling, we have ˜̌K, and one can easily show that ˜̌Kq
˜̌K is still

negligible compared to the contribution from ( tr ˜̌K)2. A straightforward calculation shows

that a is simply replaced by

ǎ = a

(

1 +
2

3
κ(N2 − 1)

)

(5.8)

in all equations, and we therefore have in the large N limit

˜̌a = a

(

1 +
2

3
κ̃

)

. (5.9)

As discussed above, increasing a moves the triple point away from the origin, so we verified

that introducing κ has the desired effect.
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6. Conclusion

We gave an explicit algorithm for turning the kinetic term of a fuzzy scalar field theory

into a multitrace expression which behaves equivalently under the functional integral. This

algorithm uses a perturbative expansion of the kinetic term, and it produces the exact result

in a — in principle — straightforward manner at every order in the perturbative series.

Explicitly, we evaluated the multitrace terms for scalar φ4-theory on the fuzzy sphere

up to second order and presented the one-cut solution in the large N limit. We found that

this solution gives rise to a consistent deformation of the region of validity of the one-cut

assumption in the case of the pure matrix model. Furthermore, this deformation exhibits

a turning point, whose location is in good agreement with the location of a triple point

conjectured from the numerical data.

Eventually, we studied a modification of the original model which is believed to pro-

vide the correct regularization of two-dimensional φ4-theory within the framework of fuzzy

geometry. The multitrace model arising from the deformed theory is a deformation of

the multitrace model previously obtained and the observed changes in the phase diagram

suggest that the modification is indeed useful.

In a future paper, we will study the full solution space to the multitrace matrix model

for both the näıve and the modified φ4-actions. Furthermore, we will try to apply the

technique of orthogonal polynomials for solving the model exactly also at finite N . Also,

we want to probe the multitrace model numerically in order to gain solid data for comparing

it with the full fuzzy field theory.

Further directions for future research are also evident: As our rewriting of the kinetic

term is independent of the potential, one can easily solve further models with different po-

tentials, as e.g. φ6-theory or even sine-Gordon theory on the fuzzy sphere. Also, field theo-

ries on more general fuzzy spaces such as higher-dimensional complex projective spaces [28],

fuzzy flag manifolds [29] and fuzzy projective algebraic varieties [30] are now accessible an-

alytically. In particular, one should study which aspects of non-renormalizability of e.g.

φ6-theory in four dimensions remain, when the theory is considered on fuzzy CP 1 ×CP 1

or fuzzy CP 2.

After scalar field theory and Yang-Mills theory on the fuzzy sphere have been ap-

proached analytically, it might also be interesting to consider the matrix model corre-

sponding to general relativity on the fuzzy sphere, which has been constructed in [31].

Eventually, let us state a rather bold conjecture: Multitrace matrix models were first

put forward and studied in the context of trying to define string theories with central

charge c > 1 [19, 20]. It is well-known that such theories exhibit a phase transition with

complex critical exponent, an earmark of high instability, and this instability is believed to

correspond to a crumpling of the Riemann surfaces. There is a natural class of multitrace

matrix models which arises from applying our approach to scalar field theories on the

fuzzy sphere and fuzzy Riemann surfaces8 of higher genera. Furthermore, the truncation

of the algebra of functions provides a rather natural mechanism for keeping the Riemann

8For a definition of such spaces, see e.g. [32]. Alternatively, one can define them by considering an

embedding of the Riemann surfaces into CPn and using the techniques of [30].
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surfaces from crumpling in an uncontrolled way. It might indeed be worthwhile to look

for a connection between fuzzy field theories and the long-sought definition of c > 1 string

theories.
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A. SU(N) orthogonality relation

In the above discussion, we used the orthogonality relation
∫

dµH(Ω) [ρ(Ω)]ij [ρ†(Ω)]kl =
1

dim(ρ)
δilδjk , (A.1)

where Ω ∈ SU(N), ρ is a finite-dimensional, unitary, irreducible representation and ρ†

denotes its complex conjugate. The measure dµH(Ω) is the Haar measure9 on SU(N)

normalized according to
∫

dµH(Ω) = 1.

We briefly recall the proof of this relation, as given e.g. in [33]. Consider the integral I =
∫

dµH(Ω)ρ(Ω)Aρ†(Ω). Using the identity ρ(Υ)Iρ†(Υ) = I, which is a trivial consequence

of the Haar measure being invariant unter translations Ω → ΥΩ, Υ ∈ SU(N), one can

show that ρ(Υ)I = Iρ(Υ). Thus, we conclude by Schur’s lemma that I = c1. Choosing

Amn = δmjδnk, we obtain
∫

dµH(Ω)[ρ(Ω)]ij [ρ
†(Ω)]kl = cjkδil. Tracing this expression over

the indices i, l yields that dim(ρ)cjk = δjk, from which (A.1) follows.

B. Trace formulæ

In this appendix, some explicit formulæ for traces of Kronecker products of matrices τa ⊗
τ b ⊗ . . . ⊗ τ c projected on certain irreducible representations ρ are given. Such traces will

be denoted by tr ρ. Furthermore, we use the shorthand notation

(µ1 . . . µm)(ν1 . . . νn) . . . := tr (τµ1 . . . τµm) tr (τν1 . . . τνn) . . . . (B.1)

Curly traces {ρσ . . .} denote a sum over all distinct permutations of the enclosed factors.

Note that simplifications arise for traceless factors. It should be stressed that our labeled

Young diagrams are not the usual ones: The labels in the boxes in the Young diagrams

describe the action of the Gell-Mann matrices corresponding to the labels. For example,

µ ν means the action of τµ ⊗ τν in the representation , which reads as

µ ν ij,kl :=
1

4

(

τµ
ikτ

ν
jl + τµ

jkτ
ν
il + τµ

ilτ
ν
jk + τµ

jlτ
ν
ik

)

. (B.2)

9i.e. the measure which is invariant under left or right multiplication by ρ(Υ), Υ ∈ SU(N)
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The tensor products of the fundamental representations we are interested in decompose in

the following way into irreducible representations:

µ ⊗ ν = µ ν ⊕ µ
ν

µ ⊗ ν ⊗ ρ ⊗ σ = µ ν ρ σ ⊕ µ ν ρ
σ

⊕ µ ν σ
ρ

⊕ µ ρ σ
ν

⊕

⊕ µ ν
ρ σ

⊕ µ ρ
ν σ

⊕

⊕
µ ν
ρ
σ

⊕
µ ρ
ν
σ

⊕
µ σ
ν
ρ

⊕
µ
ν
ρ
σ

(B.3)

or, for convenience also written in terms of dimensions:

N · N =
N2 + N

2
+

N2 − N

2

N · N · N · N =
N4 + 6N3 + 11N2 + 6N

24
+ 3

N4 + 2N3 − N2 − 2N

8
+ 2

N4 − N2

12

+ 3
N4 − 2N3 − N2 + 2N

8
+

N4 − 6N3 + 11N2 − 6N

24
.

(B.4)

Altogether, we obtain the following relations between the traces in the irreducible

representations appearing in these decompositions and the traces in the fundamental rep-

resentation:

ρ tr ρ

µ ν
1
2

(

(µ)(ν) + (µν)
)

µ

ν

1
2

(

(µ)(ν) − (µν)
)

µ ν ρ σ
1
4!

(

(µ)(ν)(ρ)(σ) + {(µ)(ν)(ρσ)} + {(µ)(νρσ)}+
+{(µν)(ρσ)} + {(µνρσ)}

)

µ ν ρ

σ

1
8

(

(µ)(ν)(ρ)(σ) + {(µν)(ρ)}(σ) − (µσ)(ν)(ρ)−
−(µσ)(νρ) − (µσ{ν)(ρ}) + {(µνρ)}(σ) − (µσ{νρ})

)

µ ν

ρ σ

1
12

(

(µ)(ν)(ρ)(σ) + (µ)(ν)(ρσ) + (µν)(ρ)(σ)−
−(µ)(νσ)(ρ) − (µρ)(ν)(σ) + {(µν)(ρσ)} − (µρν)(σ) − (µ)(νρσ)−
−(µσρ)(ν) − (µνσ)(ρ) − (µσρν) − (µνρσ) + (µσνρ) + (µρνσ)

)

µ ν

ρ

σ

1
8

(

(µ)(ν)(ρ)(σ) − (ν){(µ)(ρσ)} + (µν)(ρ)(σ) − (µν)(ρσ)−
−(µν{ρ)(σ}) + (µ{ρσ})(ν) + (µν{ρσ})

)

µ

ν

ρ

σ

1
4!

(

(µ)(ν)(ρ)(σ) − {(µ)(ν)(ρσ)} + {(µ)(νρσ)}+

+{(µν)(ρσ)} − {(µνρσ)}
)

(B.5)
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Note that adding tr ρ for all the irreducible representations ρ with two and four boxes

yields

tr (τµ) tr (τν) = tr ⊗ (τµ ⊗ τν) ,

tr (τµ) tr (τν) tr (τρ) tr (τσ) = tr ⊗ ⊗ ⊗ (τµ ⊗ τν ⊗ τρ ⊗ τσ) ,
(B.6)

respectively, which confirms that our decomposition is correct.

In the case in which all the factors of the Kronecker product are the same, the formulæ

given in (B.5) reduce to character formulæ, which are found e.g. in [34]. For convenience,

we also list them in the following table:

ρ χρ(Λ)
1
2

(

( tr Λ)2 + tr Λ2
)

1
2

(

( tr Λ)2 − tr Λ2
)

1
4!

(

( tr (Λ))4 + 6( tr Λ)2 tr Λ2 + 8 tr Λ tr Λ3 + 3( tr Λ2)2 + 6 tr Λ4
)

1
8

(

( tr (Λ))4 + 2( tr Λ)2 tr Λ2 − ( tr Λ2)2 − 2 tr Λ4
)

1
12

(

( tr (Λ))4 − 4 tr Λ tr Λ3 + 3( tr Λ2)2
)

1
8

(

( tr (Λ))4 − 2( tr Λ)2 tr Λ2 − ( tr Λ2)2 + 2 tr Λ4
)

1
4!

(

( tr (Λ))4 − 6( tr Λ)2 tr Λ2 + 8 tr Λ tr Λ3 + 3( tr Λ2)2 − 6 tr Λ4
)

(B.7)

C. Lie algebra conventions

We use generators τµ = (τ0, τa) of U(N), which are orthonormal, i.e.

tr (τµτν) = δµν ; (C.1)

τ0 = 1
N
1N , and τa are the Gell-Mann matrices generating SU(N). In general, we use the

Greek letters µ, ν, ρ, σ = 0, . . . , N2−1 and Latin letters a, b, c, d = 1, . . . , N2−1 for labeling

generators. The structure constants fabc and the symmetric tensor dabc are defined by the

multiplication rule

τaτ b =
1√
N

δabτ0 +
1

2
(ifabc + dabc)τ c . (C.2)

This implies that

fabc = −i tr ([τa, τ b]τ c) ⇒ [τa, τ b] = ifabcτ c ,

dabc = tr ({τa, τ b}τ c) ⇒ {τa, τ b} =
2√
N

δabτ0 + dabcτ c .
(C.3)

From the above definitions, it is obvious that fabc and dabc are totally antisymmetric

and symmetric in their indices, respectively. Recall also the Fierz identity τµ
ijτ

µ
kl = δilδjk

implying that τµτµ = N1N .
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The quadratic Casimir C2 with the standard eigenvalues l(l + 1) corresponds in our

conventions to

C2Φ =
1

2
[τa, [τa,Φ]] . (C.4)

Starting from

[τρ, [τµ, τν ]] = {τν{τρ, τµ}} − {τµ{τν , τρ}} , (C.5)

one easily proves the identity

facefbde =
4

N
(δbaδcd − δbcδad) + (dbaedced − dbcedaed) . (C.6)

Furthermore, we have

facedbde = tr (τaτ cτ bτd) − tr (τ cτaτ bτd) + tr (τaτ cτdτ b) − tr (τ cτaτdτ b) . (C.7)
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